学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
学术报告: Soliton resolution for nonlinear wave equation
编辑:发布时间:2016年12月15日

报告人:刘保平副教授

北京国际数学研究中心

报告题目: Soliton resolution for nonlinear wave equation

报告时间:2016年12月16日16:30

报告地点:海韵教学楼107

联系人:闫卫平副教授

内容摘要:

In this talk, we consider nonlinear dispersive Hamiltonian equations with large initial data. Our focus is the long term dynamics of their solutions.In the mathematical physics community, there has been a widespread belief that, large global solutions of dispersive equations should eventually resolve into a superposition of a free radiation component plus a finite number of nonlinear bound states. This is called the ‘soliton resolution conjecture’, which remains wide open except for few cases of integrable equations with  sufficiently nice initial data. I will present some recent results where we  manage to verify the conjecture for specific models. I will explain some of the main ingredients in our proof, and elaborate the ‘channel of energy’ inequality discovered by T. Duyckaerts, C. Kenig and F. Merle. This talk is based on joint works with Hao Jia, Wilhelm Schlag and Guixiang Xu.

报告人简介:

北京国际数学研究中心副教授,2012年博士毕业于美国加州大学伯克利分校,2012年-2015年在美国芝加哥大学做博士后研究。主要研究方向是调和分析方法在非线性色散方程中的应用,已经取得许多深刻的结果,分别发表在Adv Math, CMP, JFA等主流期刊上。

欢迎广大师生参加!