报告人:孙兵讲师
国防科技大学
报告题目:New Observation on Division Property
报告时间: 2017年9月11日下午16:00
报告地点:海韵实验楼105
内容摘要:At EUCRYPT 2015, Todo proposed the Division Property to effectively construct integral distinguishers for both Feistel and SPN structures. In this paper, firstly, it is proved that if X\subseteq\mathbb F_2^n has the division property \mathcal D_k^n, the number of elements in X is at least 2^k, based on which we can conclude that if a multi-set X has the division property \mathcal D_n^n, it is in some sense equivalent to either \mathbb F_2^n or \emptyset. Secondly, let d be the algebraic degree of the round function F:\mathbb F_2^n\rightarrow\mathbb F_2^n of a Feistel structure. If d\le n-1, the corresponding integral distinguishers are improved as follows: there exists a 3-round integral distinguisher with at most 2^n chosen plaintexts and a 4-round integral distinguisher with at most 2^{2n-2} chosen plaintexts. These results can give new insights to both the division property and Feistel structures.
报告人简介:孙兵,空军长春飞行学院第41期飞行学员,2009年毕业于国防科技大学,获理学博士学位,现为国防科技大学理学院数学与系统科学系讲师。长期从事对称密码算法的分析与设计研究,在CRYPTO、EUROCRYPT等密码学国际学术会议和期刊发表学术论文50余篇,出版学术专著1部。
学院联系人:曾吉文教授、祝辉林副教授、李伟助理教授
欢迎广大师生参加!