报告人:马辉教授
清华大学
报告题目:Uniqueness of closed self-similar solutions to $\sigma_k^{\alpha}$-curvature flow
报告时间:2017年12月08日下午15:30
报告地点:海韵实验楼105
摘要:We study the systole function along Weil-Petersson geodesics. We show that the square root of the systole function is uniform Lipschitz on the Teichmuller space endowed with the Weil-Petersson metric. As an application, we study the growth of the Weil-Petersson inradius of the moduli space of Riemann surfaces of genus $g$ with $n$ punctures as a function of $g$ and $n$. We show that the Weil-Petersson inradius is comparable to $\sqrt{\ln{g}}$ with respect to $g$, and is comparable to $1$ with respect to $n$.
报告人简介:马辉博士,教授,2000年于北京大学数学学院获得理学博士学位,先后在清华大学、美国麻州州立大学Amherst分校作博士后研究。2004年6月起在清华任教。研究方向为微分几何。在Bull. Lond. Math. Soc.,J. Differential Geom., Ann. Global Anal. Geom.等期刊发表论文二十余篇。
学院联系人:吕楹助理教授
欢迎广大师生参加!