学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
学术报告:Quantum correlation based on Uhlmann Fidelity for Gaussian states
编辑:发布时间:2018年12月04日

报告人:侯晋川教授

             太原理工大学

报告题目:Quantum correlation based on Uhlmann Fidelity for Gaussian states

报告时间:2018年12月08日下午15:00

报告地点:实验楼105

摘要:A quantum correlation $N_{F}^{\mathcal G,A}$ for $(n+m)$-mode     continuous-variable systems is  introduced in terms of local Gaussian unitary operations performed on subsystem A based on Uhlmann fidelity $F$. This     quantity is a remedy for the local ancilla problem associated with the geometric measurement-induced correlations; is local Gaussian unitary invariant; is non-increasing under any Gaussian quntum channel performed on subsystem B and is an entanglement monotone when restricted to pure Gaussian states in the  $(1+m)$-mode case. A concrete formula for $(1+1)$-mode symmetric squeezed thermal states (SSTSs) is presented. We also compare $N_{ F}^{\mathcal G,A}$ with other quantum correlations in scale, such as Gaussian quantum discord and Gaussian geometric discord, for two-mode SSTSs, which reveals that $N_{F}^{\mathcal G,A}$ has some advantage in detecting quantum correlations of    Gaussian states.

报告人简介: 侯晋川,太原理工大学数学学院教授,博士生导师,研究方向:算子代数、算子理论及量子信息。1986年于复旦大学数学研究所获博士学位,同年回山西师范大学继续任教,破格晋升教授。曾担任山西师范大学校长、山西省科学技术协会主席、太原理工大学副校长等职务。获全国优秀教师、全国先进工作者、全国做出突出贡献的回国留学人员、山西省特级劳模、山西省优秀专家、山西省第二届科技功臣等称号;是全国五一劳动奖章获得者、中央直接联系高级专家,享受国务院政府特殊津贴。主持完成国家自然科学基金项目11项。

联系人:杜拴平教授

欢迎广大师生参加!