报告人:白承铭教授
南开大学
报告题目:Deformations and their controlling cohomologies of $\mathcal O$-operators
报告时间:2018年12月10日下午14:30
报告地点:实验楼105
摘要:We establish a deformation theory of a kind of linear operators, namely, $\mathcal O$-operators in consistence with the general principles of deformation theories. On one hand, there is a suitable differential graded Lie algebra whose Maurer-Cartan elements characterize $\mathcal O$-operators and their deformations. On the other hand, there is an analogue of the Andr\'e-Quillen cohomology which controls the deformations of $\mathcal O$-operators. Infinitesimal deformations of $\mathcal O$-operators are studied and applications are given to deformations of skew-symmetric $r$-matrices for the classical Yang-Baxter equation. This is a joint work with Li Guo, Yunhe Sheng and Rong Tang.
报告人简介: 白承铭,南开大学陈省身数学研究所教授,所长。主要从事与数学物理和李理论相关的一些代数体系的结构及其应用的研究。曾获国家杰出青年科学基金资助和国务院政府特殊津贴,并入选国家特支计划科技创新领军人才。培养博士生和硕士生多名,其中的倪翔曾获中国数学会“钟家庆数学奖优秀硕士论文奖”。至今已发表学术论文100余篇,其中大多数被SCI检索。
联系人:谭绍滨教授
欢迎广大师生参加!