学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
学术报告: On logarithmic modules for affine vertex operator algebras
编辑:发布时间:2019年01月04日

报告人:Drazen Adamovic 教授 

       University of Zagreb

题目: On logarithmic modules for affine vertex operator algebras

时间:2019年01月07日上午09:00

地点:海韵行政楼B313

摘要: We shall first review basic results for logarithmic modules for vertex operator algebras and discuss methods for their constructions. 

Then we present  recent explicit realizations of certain affine vertex algebras and discuss their applications in the representation theory.

Admissible affine vertex operator algebras $V_{k} (\mathfrak g)$  are semi-simple in the category $\mathcal O$.  In this talk, we shall consider $V_{k} (\mathfrak g)$--modules outside of the category $\mathcal O$.

 Logarithmic modules appear in the non-split extension of certain weight modules.    Although  $V_{k} (\mathfrak g)$--modules are modules for the affine Lie algebras, it is difficult to construct indecomposable and logarithmic modules using concepts from the representation theory of Lie algebras. We will show how these modules can be explicitly constructed using vertex-algebraic techniques. We also study a connection with triplet vertex algebras..

联系人:王清教授

 

欢迎广大师生参加!