Xiamen Workshop on Lie Theory and Related Topics
Schedule
Jan. 20
All day | Check in,Xiamen University International Academic Exchange Center (Yifu Building逸夫楼) |
Jan. 21,Room 661, Building of Mathematics and Physics, Haiyun Campus
A.M |
8:15 | Please wait at the lobby of the hotel, and we will take the shuttle to the workshop venue together. |
8:30-8:40 | Welcome speech (Shaobin Tan) |
| Chair: Haisheng Li |
8:40-9:40 | Masahiko Miyamoto: C_2-cofintieness of orbifold model |
9:40-10:10 | Photos, Tea Break |
10:10-11:10 | Ching Hung Lam: Towards the classification of holomorphic vertex operator algebras of central charge 24 |
11:10-12:10 | Hongyan Guo: Twisted Heisenberg-Virasoro vertex operator algebra |
P.M |
Chair: Shaobin Tan |
14:00-15:00 | Fei Kong: Twisted quantum affinizations and quantization of Extended affine Lie algebras |
15:00-16:00 | Saeid Azam: Combinatorial aspects of extended affine Lie algebras |
16:00-18:00 | Free discussion |
20:00 | Take the shuttle to the hotel together |
Abstracts
Jan.21 ,Monday
Masahiko Miyamoto: C_2-cofintieness of orbifold model
Abstract: I will explain ideas to prove the C_2-cofiniteness of subVOAs under suitable assumptions. In particular, we will prove that if V is a C_2-cofinite simple vertex operator algebra of CFT-type with a nonsingular invariant bilinear form and its an automorphism group G is finite, then an orbifold model V^G is also C_2-cofinite.
Ching Hung Lam: Towards the classification of holomorphic vertex operator algebras of central charge 24
Abstract: In this talk, we will discuss the recent progress towards
the classification of holomorphic vertex operator algebras of central
charge 24. Some important tools will be discussed. We will stress on
the similarities between the theory of vertex operator algebras and
the theory of integral lattices. In particular, we will discuss a new
approach using the Leech lattice and some orbifold VOAs associated
with its co-invariant lattices.
Hongyan Guo: Twisted Heisenberg-Virasoro vertex operator algebra
Abstract: One of the most important problems in the vertex algebra theory is the construction of vertex algebras from Lie algebras and the study of the equivalences between their module categories. In this talk, we study twisted Heisenberg-Virasoro algebras in the context of vertex algebras. The structure and representation theory of obtained vertex operator algebras will be discussed. This is a joint work with Professor Qing Wang.
Fei Kong: Twisted quantum affinizations and quantization of Extended affine Lie algebras
Abstract: We generalize Drinfeld’s twisted quantum affine algebras to construct twisted quantum affinizations for all symmetrizable generalized Cartan matrices. As an application, we obtain the quantization of extended affine Lie algebras of nullity 2.
Saeid Azam: Combinatorial aspects of extended affine Lie algebras
Abstract: Affine Lie theory enjoys a very rich combinatorial nature which has been intensively investigated.We investigate some combinatorial aspects of affine Lie theory for higher nullity extensions, namely for the class of extended affine Lie algebras.