学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
学术报告:Random k-trees and Brownian Continuum Random Tree
编辑:发布时间:2019年03月26日

报告人:靳宇博士

                维也纳科技大学

题目: Random k-trees and Brownian Continuum Random Tree

时间:201932715:00-16:00

地点:实验楼106

摘要:

In this talk, I will present our recent work on random k-trees. The class of k-trees, as a class of tree-like graphs, is interesting from both combinatorial and algorithmic point of view. 

Darrasse and Soria (2009) used the generating function approach to show a Rayleigh limiting distribution for the expected distances between pairs of vertices in a random k-tree.  Inspired by this results, we prove a stronger result, that is, a random k-tree with (n+k) vertices, after scaling the distances to the root by $1/\sqrt{n}$, converges to the Brownian Continuum Random Tree multiplied by a deterministic scaling factor. This shows in particular that the diameter and the distance of two independently selected random vertices in a random k-tree are of order $\sqrt n$.

This is a joint work with Michael Drmota and Benedikt Stufler.

 

报告人简介:

靳宇(Emma Yu Jin),维也纳科技大学(TU Wien)博士后。2010年博士毕业于南开大学组合数学中心。博士毕业后,以Alexander von Humboldt研究学者的身份在德国University of Kaiserslautern做了四年博士后研究,2015年之后在奥地利Algorithm and Enumerative Combinatorics项目的资助下在TU Wien从事博士后研究工作至今。Emma博士在生物数学和计数组合分析方面做出了许多优秀的工作,在Bulletin of Mathematical Biology, Proceedings of the American Mathematical Society, Random Structures & Algorithms, European Journal of Combinatorics, Advances in Applied Math. 等生物数学和组合数学专业杂志上发表近20篇论文。特别是她关于RNA结构和伪扭结的渐进计数的文章获得数学生物杂志2006-2008期间Lee Segel最佳学生论文奖。