学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
【学术报告】Mild ill-poseness in W^{1,∞}to the Incompressible Porous Media Equation
编辑:刘梦洁发布时间:2024年09月10日

报告人:谢耀玮首都师范大学

间:20249118:00

点:海韵园行政楼C503

内容摘要:

This paper is concerned with the perturbation problem of the incompressible porous media (IPM) equation near a more generic steady state with horizontal stratification on the whole space \mathbb{R}^2. The steady state we consider is g(x_2)\in B^{\frac{2}{p}+2}_{p,1}(\mr) with 2\leq p<\infty and g'(x_2)\not\equiv0. We construct a class of initial data such that the solution of the IPM equation is mildly ill-posed around this steady state, and accordingly, instability can be inferred.

人简介

谢耀玮,首都师范大学数学科学学院博士生。主要从事流体力学方程稳定性的数学理论研究,在CVPDEZAMP上发表论文2篇。曾获2021-2022年硕士研究生国家奖学金。


联系人:谭忠