学术报告
所在位置 网站首页 > 学术科研 > 学术报告 > 正文
【学术报告】(线上)Multivariate zero-inflated INAR(1) model with an application in automobile insurance
编辑:魏佳发布时间:2022年08月23日

报告人:张鹏成 (墨尔本大学)

时  间:827日下午14:30

地  点:腾讯会议ID283-771-517(无密码)

内容摘要:

The aim of this paper is to propose a multivariate INAR(1) model for addressing all the challenges in high-dimensional non-life claim count data sets that exhibit time and cross dependence and a zero-inflation attribute. In particular, the innovation terms are modelled using a multivariate zero-inflated Poisson distribution or a multivariate zero-inflated hurdle Poisson distribution which can handle extra zeros in the data. Furthermore, the proposed modelling framework can take into account the influence of individual and coverage-specific covariates on the mean parameters of each model which enables the calculation of tailored made insurance premiums according to different risk profiles. Maximum likelihood estimation of the model parameters is achieved through a novel Expectation-Maximization algorithm which is demonstrated to perform satisfactorily when we exemplify our approach on the European Motor Third Party Liability claim count data.

人简介:

张鹏成,墨尔本大学精算博士,主要从事保险精算、应用统计领域的研究,在Insurance: Mathematics and Economics, Astin Bulletin, North American Actuarial Journal等杂志发表相关学术论文。


联系人:王文元