报告人:方飞(北京工商大学)
时 间:2022年2月15日下午2:30
地 点:腾讯会议ID:602-698-161(无密码)
内容摘要:
In this talk, we use the self-similar transformation and the modified potential well method to study the long time behaviors of solutions to the classical semilinear parabolic equation associated with critical Sobolev exponent in R^N. Global existence and finite time blowup of solutions are proved when the initial energy is in three cases. When the initial energy is low or critical, we not only give a threshold result for the global existence and blowup of solutions, but also obtain the decay rate of the L^2 norm for global solutions. When the initial energy is high, sufficient conditions for the global existence and blowup of solutions are also provided. We extend the recent results which were obtained in [R. Ikehata, M. Ishiwata, T. Suzuki, Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2010), No. 3,877-900].
个人简介:
方飞,博士,北京工商大学理学院副教授。2013年于hg8868官方网站获理学博士学位。2013年至2015年于北京大学数学科学学院博士后流动站工作,任讲师。主要科研项目有博士后基金和两项国家自然科学基金。主要研究非线性偏微分方程,近年来主要科研论文发表在Adv. Math., JMAA, JDE, Nonlinear Anal. Real等。
联系人:谭忠