报告人:洪寒(清华大学丘成桐数学中心)
时 间:11月3日下午15:00
地 点:腾讯会议ID:785 192 925(无密码)
内容摘要:
In this talk, we will discuss stability results for noncompact capillary surfaces. A classical result in minimal surface theory says that a stable complete minimal surface in $\mathbb{R}^3$ must be a plane. We show that, under certain curvature assumptions, a weakly stable capillary surface in a 3-manifold with boundary has only three possible topological configurations. In particular, we prove that a weakly stable capillary surface in a half-space of $\mathbb{R}^3$ which is minimal or has the contact angle less than or equal to $\pi/2$ must be a half-plane.
个人简介:
洪寒,丘成桐数学中心(YMSC)博士后,清华大学水木学者。主要研究领域是凸几何和几何分析,在容量Minkowksi问题,常均曲面摩尔斯指标估计,特征值优化等方面取得了若干成果,已在CVPDE, IMRN, JGA等杂志发表了数篇论文。
联系人:夏超