培养工作
所在位置 网站首页 > 研究生教育 > 培养工作 > 正文
短课程:黎曼流形中极小超曲面理论
编辑:mathyjs发布时间:2019年10月31日

课程名称: 黎曼流形中极小超曲面理论

 

课程简介

1.      欧氏空间中极小超曲面的紧性定理和有界变差函数

2.      面积极小超曲面和Ricci有下界流形的Poincare不等式

3.      Gromov-Hausdorff紧性,Cheeger-Colding理论

4.      流形上的极小图理论,Liouville型定理

5.      流形中极小超曲面的收敛性和分析性质

 

授课教师: 丁琪,现任上海数学中心研究员,于2012年复旦大学获博士学位,于2012-2014年在德国莱比锡马克斯-普朗克数学研究所从事博士后研究工作。2019年获得国家自然科学基金优秀青年基金。他的研究方向是微分几何与几何分析,主要研究对象是极小超曲面和平均曲率流,取得了一系列研究成果发表在CPAM, Amer. J. Math., Crelle, Adv. Math., Trans. AMS等国际一流数学期刊上。

 

授课对象:研究生

 

上课时间和地点:

11月19日(周二)上午,8:30-11:30,实验楼105;

11月21日(周四)上午,8:30-11:30,实验楼105;

11月22日(周五)下午,14:00-17:00,实验楼105;

11月26日(周二)上午,8:30-11:30,实验楼105;

11月28日(周四)上午,8:30-11:30,实验楼105。

数学科学学院

2019年10月31日